• CALL TOLL FREE: 1-800-279-1353

Archives for June 2008

Commercial and High Rise Building Beam Design

Beam Design and Structural Design in Commercial and High-Rise Buildings

Beam design and structural design in high-rise buildings is constantly evolving. Structural designs are created to withstand earthquakes and high winds, conform to building codes, and construct impressive visual designs. Beam designs can significantly affect the stability of a high-rise building as well as the aesthetic appeal of a structure.

The structural design of a high-rise building is greatly dependent upon lateral loads. For this reason, bean design in high-rise buildings deserves careful consideration. Specially designed internal support system help keep the structure stable, especially in high wind and during earthquake tremors.

Factors Affecting Beam Design and Structural Design in Commercial and High-Rise Buildings: Drift and Acceleration

Another factor that plays into the beam design and structural design of commercial and high-rise buildings is drift. Drift is defined as the ratio of the building deflection over its height. Structural engineers must also take into consideration building acceleration when designing beams for commercial and high-rise buildings. Building acceleration is a measure of the speed with which drift occurs. This plays a critical role in the stability of a high-rise structure.

Beam Design in Commercial and High-Rise Buildings: Shear Wall Systems

One popular way to stabilize a high-rise building is by using shear wall construction. A shear wall is designed to withstand the combined forces of shear, moment, and axial loads caused by wind loads and gravity loads in a high-rise building.  A shear wall system joins solid structures that remain constant from floor to floor to add strength and stability in a tall building. However, shear wall construction inhibits the design of the foyer or lobby of a building. To achieve an open, inviting space, structural engineers often must use a combination of other support systems to allow for the desired design of the building.

Transfer beams are often used in conjunction with a shear wall system in commercial and high-rise buildings. Transfer beams are designed to transfer the load from the shear walls to the lower frame of the structure. This combination of transfer beams and shear wall supports has proven reliable, even in high winds and during an earthquake.

Beam design and structural design in commercial and high-rise buildings can utilize many different design techniques to achieve the desired height and visual attractiveness specified by the architect and owner. Beam design and structural design in commercial and high-rise buildings is an ever-evolving process.

Read more

State & Federal Building Codes

More about State and Federal Building Codes

State and Federal Building codes are an important part of the construction process. For structural engineers, working knowledge of state and federal building codes is essential. Keeping on top of constant changes made to state and federal building codes can be challenging. Building codes vary from state to state. There are several websites available to help you keep up to date on federal and state building codes. Try these resources to help you stay on top of federal and state building codes.

Federal Building Code Resources
ANSI ( http://www.ansi.org/ ) – American National Standards Institute
ASTM ( http://www.astm.org/ ) – American Society for Testing and Materials
BOCA ( http://www.bocai.org/ )- Building Officials and Code Administrators, International
ICBO ( http://www.icbo.org/ ) – International Conference of Building Officials
ICC( http://www.intlcode.org/ ) – International Codes Council
NCSBCS ( http://www.ncsbcs.org/ ) –  National Conference of States on Building Codes and Standards, Inc.
SBCCI ( http://www.sbcci.org/ ) – Southern Building Code Congress, International
USACE ( http://www.usace.army.mil/inet/usace-docs/ ) – United States Army Corps of Engineers Publications Page

State Specific Resources for State Building Codes
This is not a complete listing of structural engineering associations for every state. If your state Is not listed below, an Internet search will bring up your state’s SEA website.

SEAOAL  ( http://www.seaoal.com/ )- Structural Engineering Association of Alabama
SEAOA ( http://www.primenet.com/~seaoa ) – Structural Engineering Association of Arizona
SEAOSC ( http://www.seaint.org/seaosc/index.asp ) – Structural Engineering Association of Southern California
SEAOC ( http://www.seaoc.org/ ) – Structural Engineering Association of California
SEAONC ( http://www.seaonc.org/ ) – Structural Engineering Association of Northern California
SEAOCC ( http://www.seaint.org/seaocc1.htm ) – Structural Engineering Association of Central California
SEAOSD  ( http://www.seaint.org/seaosd/seaosd1home.htm )- Structural Engineering Association of San Diego
SEAC  ( http://www.seacolorado.com/ )- Structural Engineering Association of Colorado
SEAOH ( http://www.eng.hawaii.edu/~seaoh ) – Structural Engineering Association of Hawaii
SEAOI ( http://www.seaoi.org/ )- Structural Engineering Association of Illinois
SEAM ( http://www.seam.org/ ) – Structural Engineering Association of Maine
SENH ( http://www.senh.org/ ) – Structural Engineers of New Hampshire
SEANM – Structural Engineers Association of New Mexico
SEAONY – Structural Engineering Association of New York
SEAO – Structural Engineering Association of Oregon
SEAOT – Structural Engineering Association of Texas
SEAU – Structural Engineering Association of Utah
SEAW – Structural Engineering Association of Washington

Subscribing to a trade publication or state-sponsored newsletter for builders is also a great way to keep up with state and federal building codes. If you have any information on changes to any of these links or would like to have your own state listed please contact me at adam@strucalc.com

Read more